Package real-thm: real-thm
Information
name | real-thm |
version | 1.7 |
description | real-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball real-thm-1.7.tgz
- Theory file real-thm.thy (included in the package tarball)
Theorem
⊦ ∀P.
(∃x. P x) ∧ (∃M. ∀x. P x ⇒ Number.Real.≤ x M) ⇒
∃M.
(∀x. P x ⇒ Number.Real.≤ x M) ∧
∀M'. (∀x. P x ⇒ Number.Real.≤ x M') ⇒ Number.Real.≤ M M'
Input Type Operators
- →
- bool
- Number
- Real
- Number.Real.real
- Real
- Set
- Set.set
Input Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- F
- T
- Bool
- Number
- Real
- Number.Real.≤
- Number.Real.sup
- Real
- Set
- Set.∅
- Set.fromPredicate
- Set.∈
Assumptions
⊦ T
⊦ F ⇔ ∀p. p
⊦ ∀x. ¬Set.∈ x Set.∅
⊦ (¬) = λp. p ⇒ F
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀P. ¬(∀x. P x) ⇔ ∃x. ¬P x
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀s t. s = t ⇔ ∀x. Set.∈ x s ⇔ Set.∈ x t
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀p x. Set.∈ x { y. y | p y } ⇔ p x
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀s.
¬(s = Set.∅) ∧ (∃m. ∀x. Set.∈ x s ⇒ Number.Real.≤ x m) ⇒
(∀x. Set.∈ x s ⇒ Number.Real.≤ x (Number.Real.sup s)) ∧
∀m.
(∀x. Set.∈ x s ⇒ Number.Real.≤ x m) ⇒
Number.Real.≤ (Number.Real.sup s) m