Package relation-natural-thm: Properties of relations over natural numbers

Information

namerelation-natural-thm
version1.35
descriptionProperties of relations over natural numbers
authorJoe Leslie-Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2014-01-13
requiresbool
function
natural
relation-def
relation-natural-def
relation-thm
relation-well-founded
set
showData.Bool
Function
Number.Natural
Relation
Set

Files

Theorems

irreflexive isSuc

transitive (<)

wellFounded (<)

wellFounded isSuc

subrelation isSuc (<)

transitiveClosure isSuc = (<)

m. wellFounded (measure m)

r. subrelation isSuc r transitive r subrelation (<) r

r. wellFounded r ¬f. n. r (f (suc n)) (f n)

p g h. f. x. f x = if p x then f (g x) else h x

m a b. (y. measure m y a measure m y b) m a m b

r.
    wellFounded r
    h.
      (f g x. (z. r z x f z = g z) h f x = h g x)
      ∃!f. x. f x = h f x

r.
    (x. ¬r x x) (x y z. r x y r y z r x z)
    (x. finite { y. y | r y x }) wellFounded r

External Type Operators

External Constants

Assumptions

infinite universe

¬

¬

x. x universe

t. t t

p. p

x. id x = x

t. t ¬t

m. ¬(m < 0)

n. ¬(n < n)

n. 0 < suc n

n. n < suc n

(¬) = λp. p

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx.

t. ¬¬t t

t. ( t) t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

m. m + 0 = m

r. wellFounded r irreflexive r

t. ( t) ¬t

t. t ¬t

s. infinite s ¬finite s

() = λp q. p q p

t. (t ) (t )

t1 t2. (if then t1 else t2) = t2

t1 t2. (if then t1 else t2) = t1

f y. (let x y in f x) = f y

x y. x = y y = x

t1 t2. t1 t2 t2 t1

t1 t2. t1 t2 t2 t1

s x. finite (insert x s) finite s

m n. isSuc m n suc m = n

m n. ¬(m n) n < m

m. m = 0 n. m = suc n

() = λp q. (λf. f p q) = λf. f

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

t1 t2. ¬(t1 t2) t1 ¬t2

m n. m + suc n = suc (m + n)

m n. suc m < suc n m < n

s t. finite t s t finite s

r s. subrelation r s wellFounded s wellFounded r

t1 t2. ¬(t1 t2) ¬t1 ¬t2

r m. wellFounded r wellFounded (λx y. r (m x) (m y))

f g. (x. f x = g x) f = g

() = λp q. r. (p r) (q r) r

m n. m < n n < m m = n

r s.
    subrelation r s transitive s subrelation (transitiveClosure r) s

r s. subrelation r s subrelation s r r = s

m n. m < n d. n = m + suc d

m x y. measure m x y m x < m y

p q. (x. p q x) p x. q x

p q. (x. p q x) p x. q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

m n. m < suc n m = n m < n

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

t1 t2 t3. (t1 t2) t3 t1 t2 t3

t1 t2 t3. (t1 t2) t3 t1 t2 t3

m n p. m < n n < p m < p

m n p. m < n n p m < p

s t. s t x. x s x t

p x. (y. p y y = x) (select) p = x

r. (x. y. r x y) f. x. r x (f x)

p. p 0 (n. p n p (suc n)) n. p n

r s. subrelation r (bigIntersect s) t. t s subrelation r t

p x. x { y. y | p y } p x

r s. subrelation r s x y. r x y s x y

x y s. x insert y s x = y x s

(∃!) = λp. () p x y. p x p y x = y

p. (n. (m. m < n p m) p n) n. p n

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x) (x. q x) x. p x q x

r.
    transitiveClosure r =
    bigIntersect { s. s | subrelation r s transitive s }

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

r. transitive r x y z. r x y r y z r x z

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p2 p1) (q1 q2) (p1 q1) p2 q2

p c x y. p (if c then x else y) (c p x) (¬c p y)

r. wellFounded r p. (x. (y. r y x p y) p x) x. p x

f s. (x y. f x = f y x = y) infinite s infinite (image f s)

p f s. (y. y image f s p y) x. x s p (f x)

r. wellFounded r p. (x. p x) x. p x y. r y x ¬p y