Package relation-well-founded-tail: relation-well-founded-tail

Information

namerelation-well-founded-tail
version1.0
descriptionrelation-well-founded-tail
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-02-19
showData.Bool

Files

Theorems

P g h. f. x. f x = (if P x then f (g x) else h x)

<< P G H.
    Relation.wellFounded <<
    (f g x.
       (z. << z x f z = g z)
       (P f x P g x) G f x = G g x H f x = H g x)
    (f g x. (z. << z x f z = g z) H f x = H g x)
    (f x y. P f x << y (G f x) << y x)
    f. x. f x = (if P f x then f (G f x) else H f x)

Input Type Operators

Input Constants

Assumptions

T

F p. p

x. Function.id x = x

t. t ¬t

n. Number.Natural.< Number.Numeral.zero (Number.Natural.suc n)

(¬) = λp. p F

t. (x. t) t

t. (λx. t x) = t

() = λP. P = λx. T

x. x = x T

() = λp q. p q p

t. (t T) (t F)

(¬T F) (¬F T)

f y. (λx. f x) y = f y

m. m = Number.Numeral.zero n. m = Number.Natural.suc n

P. (b. P b) P T P F

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

m n.
    Number.Natural.< (Number.Natural.suc m) (Number.Natural.suc n)
    Number.Natural.< m n

() = λp q. r. (p r) (q r) r

P Q. (x. P Q x) P x. Q x

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

t1 t2 t3. t1 t2 t3 (t1 t2) t3

p q r. p q r p q r

P x. (y. P y y = x) (select) P = x

P. (x. y. P x y) y. x. P x (y x)

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

P.
    P Number.Numeral.zero (n. P n P (Number.Natural.suc n)) n. P n

(t. ¬¬t t) (¬T F) (¬F T)

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x) (x. Q x) x. P x Q x

e f.
    fn.
      fn Number.Numeral.zero = e
      n. fn (Number.Natural.suc n) = f (fn n) n

A B C D. (A B) (C D) A C B D

A B C D. (A B) (C D) A C B D

P c x y. P (if c then x else y) (c P x) (¬c P y)

(m. Number.Natural.< m Number.Numeral.zero F)
  m n.
    Number.Natural.< m (Number.Natural.suc n)
    m = n Number.Natural.< m n

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

<<.
    Relation.wellFounded <<
    H.
      (f g x. (z. << z x f z = g z) H f x = H g x)
      f. x. f x = H f x

p q r.
    (p q q p) ((p q) r p q r) (p q r q p r)
    (p p p) (p p q p q)