Package set-finite-def: Definition of finite sets
Information
name | set-finite-def |
version | 1.37 |
description | Definition of finite sets |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2015-01-02 |
checksum | 5ea93dfad7fc9a0d9031fe5f50c09ab0778e31c4 |
requires | bool set-def |
show | Data.Bool Set |
Files
- Package tarball set-finite-def-1.37.tgz
- Theory source file set-finite-def.thy (included in the package tarball)
Defined Constants
- Set
- finite
- infinite
Theorems
⊦ finite ∅
⊦ ∀s. infinite s ⇔ ¬finite s
⊦ ∀x s. finite s ⇒ finite (insert x s)
⊦ ∀a. finite a ⇔ a = ∅ ∨ ∃x s. a = insert x s ∧ finite s
⊦ ∀p. p ∅ ∧ (∀x s. p s ⇒ p (insert x s)) ⇒ ∀a. finite a ⇒ p a
External Type Operators
- →
- bool
- Set
- set
External Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- ⊤
- Bool
- Set
- ∅
- insert
Assumptions
⊦ ⊤
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀p q. (∀x. p x ⇒ q x) ⇒ (∃x. p x) ⇒ ∃x. q x
⊦ ∀p1 p2 q1 q2. (p1 ⇒ p2) ∧ (q1 ⇒ q2) ⇒ p1 ∧ q1 ⇒ p2 ∧ q2
⊦ ∀p1 p2 q1 q2. (p1 ⇒ p2) ∧ (q1 ⇒ q2) ⇒ p1 ∨ q1 ⇒ p2 ∨ q2