Package set-fold: A fold operation on finite sets

Information

nameset-fold
version1.9
descriptionA fold operation on finite sets
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool
Set

Files

Defined Constant

Theorems

f b.
    (x y s. ¬(x = y) f x (f y s) = f y (f x s))
    fold f b = b
    x s.
      finite s
      fold f (insert x s) b =
      if x s then fold f s b else f x (fold f s b)

f b.
    (x y s. ¬(x = y) f x (f y s) = f y (f x s))
    fold f b = b
    x s.
      finite s
      fold f s b =
      if x s then f x (fold f (delete s x) b) else fold f (delete s x) b

s f g b.
    finite s (x. x s f x = g x)
    (x y s. ¬(x = y) f x (f y s) = f y (f x s))
    (x y s. ¬(x = y) g x (g y s) = g y (g x s))
    fold f s b = fold g s b

Input Type Operators

Input Constants

Assumptions

T

finite

F p. p

x. ¬(x )

t. t ¬t

(¬) = λp. p F

() = λP. P ((select) P)

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

x. x = x T

n. ¬(Number.Natural.suc n = 0)

() = λp q. p q p

t. (t T) (t F)

p x. p x p ((select) p)

(¬T F) (¬F T)

x y. x = y y = x

t1 t2. t1 t2 t2 t1

s x. finite s finite (delete s x)

s x. finite (delete s x) finite s

s x. finite (insert x s) finite s

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

x s. x s insert x s = s

m n. Number.Natural.suc m = Number.Natural.suc n m = n

x s. delete s x = s ¬(x s)

() = λp q. r. (p r) (q r) r

x s. x s insert x (delete s x) = s

x s. delete (insert x s) x = s ¬(x s)

P Q. (x. P Q x) P x. Q x

P Q. (x. P x) Q x. P x Q

x y s. delete (delete s x) y = delete (delete s y) x

p q r. p q r p q r

s t. s = t x. x s x t

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

P. P 0 (n. P n P (Number.Natural.suc n)) n. P n

(t. ¬¬t t) (¬T F) (¬F T)

x y s. x insert y s x = y x s

s x y. x delete s y x s ¬(x = y)

e f. fn. fn 0 = e n. fn (Number.Natural.suc n) = f (fn n) n

P c x y. P (if c then x else y) (c P x) (¬c P y)

t1 t2. (¬(t1 t2) ¬t1 ¬t2) (¬(t1 t2) ¬t1 ¬t2)

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

P.
    P (x s. P s ¬(x s) finite s P (insert x s))
    s. finite s P s

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)