Package set-fold-def: set-fold-def
Information
name | set-fold-def |
version | 1.13 |
description | set-fold-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball set-fold-def-1.13.tgz
- Theory file set-fold-def.thy (included in the package tarball)
Defined Constant
- Set
- Set.fold
Theorem
⊦ ∀f b.
(∀x y s. ¬(x = y) ⇒ f x (f y s) = f y (f x s)) ⇒
Set.fold f Set.∅ b = b ∧
∀x s.
Set.finite s ⇒
Set.fold f (Set.insert x s) b =
if Set.∈ x s then Set.fold f s b else f x (Set.fold f s b)
Input Type Operators
- →
- bool
- Number
- Natural
- Number.Natural.natural
- Natural
- Set
- Set.set
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- F
- T
- Bool
- Number
- Natural
- Number.Natural.suc
- Number.Natural.zero
- Natural
- Set
- Set.∅
- Set.delete
- Set.finite
- Set.insert
- Set.∈
Assumptions
⊦ T
⊦ Set.finite Set.∅
⊦ F ⇔ ∀p. p
⊦ ∀x. ¬Set.∈ x Set.∅
⊦ ∀t. t ∨ ¬t
⊦ (¬) = λp. p ⇒ F
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∃x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. ¬(Number.Natural.suc n = 0)
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀s x. Set.finite (Set.delete s x) ⇔ Set.finite s
⊦ ∀s x. Set.finite (Set.insert x s) ⇔ Set.finite s
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀x s. Set.∈ x s ⇔ Set.insert x s = s
⊦ ∀m n. Number.Natural.suc m = Number.Natural.suc n ⇔ m = n
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀x s. Set.delete (Set.insert x s) x = s ⇔ ¬Set.∈ x s
⊦ ∀P Q. (∃x. P x) ⇒ Q ⇔ ∀x. P x ⇒ Q
⊦ ∀x y s. Set.delete (Set.delete s x) y = Set.delete (Set.delete s y) x
⊦ ∀s t. s = t ⇔ ∀x. Set.∈ x s ⇔ Set.∈ x t
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀x y s. Set.∈ x (Set.insert y s) ⇔ x = y ∨ Set.∈ x s
⊦ ∀s x y. Set.∈ x (Set.delete s y) ⇔ Set.∈ x s ∧ ¬(x = y)
⊦ ∀e f. ∃fn. fn 0 = e ∧ ∀n. fn (Number.Natural.suc n) = f (fn n) n
⊦ ∀P c x y. P (if c then x else y) ⇔ (c ⇒ P x) ∧ (¬c ⇒ P y)
⊦ ∀t1 t2. (¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2) ∧ (¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2)
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀P.
P Set.∅ ∧
(∀x s. P s ∧ ¬Set.∈ x s ∧ Set.finite s ⇒ P (Set.insert x s)) ⇒
∀s. Set.finite s ⇒ P s
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)