name | unit-thm |
version | 1.1 |
description | unit-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-07-18 |
show | Data.Bool |
⊦ ∀f g. f = g
⊦ ∀e. ∃fn. fn Data.Unit.() = e
⊦ ∀e. ∃!fn. fn Data.Unit.() = e
⊦ ∀P. P Data.Unit.() ⇒ ∀x. P x
⊦ T
⊦ ∀v. v = Data.Unit.()
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀f g. f = g ⇔ ∀x. f x = g x
⊦ ∀P. (∃!x. P x) ⇔ (∃x. P x) ∧ ∀x x'. P x ∧ P x' ⇒ x = x'
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)