Package word-def: word-def

Information

nameword-def
version1.0
descriptionword-def
authorJoe Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2011-02-19
showData.Bool

Files

Defined Constant

Theorems

¬(Data.Word.modulus = Number.Numeral.zero)

Data.Word.modulus =
  Number.Natural.exp
    (Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero))
    Data.Word.width

Input Type Operators

Input Constants

Assumptions

T

n. Number.Natural.≤ Number.Numeral.zero n

F p. p

(¬) = λp. p F

t. (x. t) t

() = λP. P = λx. T

x. x = x T

n. ¬(Number.Natural.suc n = Number.Numeral.zero)

n. Number.Numeral.bit0 n = Number.Natural.+ n n

() = λp q. p q p

n. Number.Numeral.bit1 n = Number.Natural.suc (Number.Natural.+ n n)

(¬T F) (¬F T)

t1 t2. t1 t2 t2 t1

n.
    Number.Natural.*
      (Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) n =
    Number.Natural.+ n n

m n. ¬(Number.Natural.< m n Number.Natural.≤ n m)

m n. ¬(Number.Natural.≤ m n Number.Natural.< n m)

m n. Number.Natural.≤ (Number.Natural.suc m) n Number.Natural.< m n

() = λp q. (λf. f p q) = λf. f T T

m n. Number.Natural.suc m = Number.Natural.suc n m = n

m n.
    Number.Natural.even (Number.Natural.* m n)
    Number.Natural.even m Number.Natural.even n

m n.
    Number.Natural.even (Number.Natural.+ m n) Number.Natural.even m
    Number.Natural.even n

(Number.Natural.even Number.Numeral.zero T)
  n. Number.Natural.even (Number.Natural.suc n) ¬Number.Natural.even n

m n. Number.Natural.≤ m n Number.Natural.< m n m = n

m n. Number.Natural.≤ m n Number.Natural.≤ n m m = n

m n.
    Number.Natural.* m n = Number.Numeral.zero
    m = Number.Numeral.zero n = Number.Numeral.zero

m n.
    Number.Natural.exp m n = Number.Numeral.zero
    m = Number.Numeral.zero ¬(n = Number.Numeral.zero)

m n p.
    Number.Natural.* m n = Number.Natural.* m p
    m = Number.Numeral.zero n = p

m n p.
    Number.Natural.≤ (Number.Natural.* m n) (Number.Natural.* m p)
    m = Number.Numeral.zero Number.Natural.≤ n p

m n p.
    Number.Natural.< (Number.Natural.* m n) (Number.Natural.* m p)
    ¬(m = Number.Numeral.zero) Number.Natural.< n p

(m. Number.Natural.≤ m Number.Numeral.zero m = Number.Numeral.zero)
  m n.
    Number.Natural.≤ m (Number.Natural.suc n)
    m = Number.Natural.suc n Number.Natural.≤ m n

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

(n. Number.Natural.+ Number.Numeral.zero n = n)
  (m. Number.Natural.+ m Number.Numeral.zero = m)
  (m n.
     Number.Natural.+ (Number.Natural.suc m) n =
     Number.Natural.suc (Number.Natural.+ m n))
  m n.
    Number.Natural.+ m (Number.Natural.suc n) =
    Number.Natural.suc (Number.Natural.+ m n)