name | word16-bits |
version | 1.1 |
description | word16-bits |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-03-17 |
show | Data.Bool |
⊦ ∀w.
∃x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15.
w =
Data.Word16.Bits.toWord
(Data.List.:: x0
(Data.List.:: x1
(Data.List.:: x2
(Data.List.:: x3
(Data.List.:: x4
(Data.List.:: x5
(Data.List.:: x6
(Data.List.:: x7
(Data.List.:: x8
(Data.List.:: x9
(Data.List.:: x10
(Data.List.:: x11
(Data.List.:: x12
(Data.List.:: x13
(Data.List.:: x14
(Data.List.:: x15
Data.List.[]))))))))))))))))
⊦ T
⊦ ∀n. Number.Natural.≤ Number.Numeral.zero n
⊦ F ⇔ ∀p. p
⊦ (¬) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀w. Data.Word16.Bits.toWord (Data.Word16.Bits.fromWord w) = w
⊦ ∀w. Data.List.length (Data.Word16.Bits.fromWord w) = Data.Word16.width
⊦ ∀n. ¬(Number.Natural.suc n = Number.Numeral.zero)
⊦ ∀n. Number.Numeral.bit0 n = Number.Natural.+ n n
⊦ Data.Word16.width =
Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero))))
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀n. Number.Numeral.bit1 n = Number.Natural.suc (Number.Natural.+ n n)
⊦ ∀h t. Data.List.tail (Data.List.:: h t) = t
⊦ ∀t h. Data.List.head (Data.List.:: h t) = h
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀l. Data.List.length l = Number.Numeral.zero ⇔ l = Data.List.[]
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀n.
Number.Natural.*
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) n =
Number.Natural.+ n n
⊦ ∀m n. ¬(Number.Natural.< m n ∧ Number.Natural.≤ n m)
⊦ ∀m n. ¬(Number.Natural.≤ m n ∧ Number.Natural.< n m)
⊦ ∀m n. Number.Natural.≤ (Number.Natural.suc m) n ⇔ Number.Natural.< m n
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀m n. Number.Natural.suc m = Number.Natural.suc n ⇔ m = n
⊦ ∀m n.
Number.Natural.even (Number.Natural.* m n) ⇔
Number.Natural.even m ∨ Number.Natural.even n
⊦ ∀m n.
Number.Natural.even (Number.Natural.+ m n) ⇔ Number.Natural.even m ⇔
Number.Natural.even n
⊦ ∀l. l = Data.List.[] ∨ ∃h t. l = Data.List.:: h t
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ (Number.Natural.even Number.Numeral.zero ⇔ T) ∧
∀n. Number.Natural.even (Number.Natural.suc n) ⇔ ¬Number.Natural.even n
⊦ ∀m n. Number.Natural.≤ m n ⇔ Number.Natural.< m n ∨ m = n
⊦ ∀m n. Number.Natural.≤ m n ∧ Number.Natural.≤ n m ⇔ m = n
⊦ ∀m n.
Number.Natural.* m n = Number.Numeral.zero ⇔
m = Number.Numeral.zero ∨ n = Number.Numeral.zero
⊦ Data.List.length Data.List.[] = Number.Numeral.zero ∧
∀h t.
Data.List.length (Data.List.:: h t) =
Number.Natural.suc (Data.List.length t)
⊦ ∀m n p.
Number.Natural.* m n = Number.Natural.* m p ⇔
m = Number.Numeral.zero ∨ n = p
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.* m n) (Number.Natural.* m p) ⇔
m = Number.Numeral.zero ∨ Number.Natural.≤ n p
⊦ ∀m n p.
Number.Natural.< (Number.Natural.* m n) (Number.Natural.* m p) ⇔
¬(m = Number.Numeral.zero) ∧ Number.Natural.< n p
⊦ ∀h1 h2 t1 t2. Data.List.:: h1 t1 = Data.List.:: h2 t2 ⇔ h1 = h2 ∧ t1 = t2
⊦ (∀m. Number.Natural.≤ m Number.Numeral.zero ⇔ m = Number.Numeral.zero) ∧
∀m n.
Number.Natural.≤ m (Number.Natural.suc n) ⇔
m = Number.Natural.suc n ∨ Number.Natural.≤ m n
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
⊦ (∀n. Number.Natural.+ Number.Numeral.zero n = n) ∧
(∀m. Number.Natural.+ m Number.Numeral.zero = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)