name | word16-bytes-thm |
version | 1.2 |
description | word16-bytes-thm |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-03-18 |
show | Data.Bool |
⊦ ∀b.
Data.Word16.fromNatural (Data.Byte.toNatural b) =
Data.Word16.Bits.toWord (Data.Byte.Bits.fromWord b)
⊦ ∀w.
Data.Byte.fromNatural (Data.Word16.toNatural w) =
Data.Byte.Bits.toWord (Data.Word16.Bits.fromWord w)
⊦ ∀w. ∃b0 b1. w = Data.Word16.fromBytes b0 b1
⊦ ∀b0 b1.
Data.Word16.Bits.toWord
(Data.List.@ (Data.Byte.Bits.fromWord b1)
(Data.Byte.Bits.fromWord b0)) = Data.Word16.fromBytes b0 b1
⊦ ∀w.
∃b0 b1.
w = Data.Word16.fromBytes b0 b1 ∧
Data.Word16.toBytes w = Data.Pair., b0 b1
⊦ ∀w.
Data.Pair.,
(Data.Byte.Bits.toWord
(Data.List.drop
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit1 Number.Numeral.zero))))
(Data.Word16.Bits.fromWord w)))
(Data.Byte.Bits.toWord
(Data.List.take
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit1 Number.Numeral.zero))))
(Data.Word16.Bits.fromWord w))) = Data.Word16.toBytes w
⊦ T
⊦ ∀x. x = x
⊦ ∀n. Number.Natural.≤ Number.Numeral.zero n
⊦ ∀n. Number.Natural.≤ n n
⊦ F ⇔ ∀p. p
⊦ ∀x. Function.id x = x
⊦ ∀t. t ∨ ¬t
⊦ (¬) = λp. p ⇒ F
⊦ (∃) = λP. P ((select) P)
⊦ ∀a. ∃x. x = a
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (∃x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀w. Data.Byte.Bits.toWord (Data.Byte.Bits.fromWord w) = w
⊦ ∀w. Data.List.length (Data.Byte.Bits.fromWord w) = Data.Byte.width
⊦ ∀w. Data.Word16.Bits.toWord (Data.Word16.Bits.fromWord w) = w
⊦ ∀w. Data.List.length (Data.Word16.Bits.fromWord w) = Data.Word16.width
⊦ ∀n. ¬(Number.Natural.suc n = Number.Numeral.zero)
⊦ ∀n. Number.Natural.- n n = Number.Numeral.zero
⊦ Data.Byte.modulus =
Number.Natural.exp
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero))
Data.Byte.width
⊦ Data.Byte.width =
Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)))
⊦ Data.Word16.modulus =
Number.Natural.exp
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero))
Data.Word16.width
⊦ ∀n. Number.Numeral.bit0 n = Number.Natural.+ n n
⊦ ∀n.
Number.Natural.mod n (Number.Numeral.bit1 Number.Numeral.zero) =
Number.Numeral.zero
⊦ ∀x. (select y. y = x) = x
⊦ ∀m n. Number.Natural.≤ m (Number.Natural.+ m n)
⊦ ∀m n. Number.Natural.≤ n (Number.Natural.+ m n)
⊦ Data.Word16.width =
Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero))))
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀m.
Number.Natural.suc m =
Number.Natural.+ m (Number.Numeral.bit1 Number.Numeral.zero)
⊦ ∀n. Number.Numeral.bit1 n = Number.Natural.suc (Number.Natural.+ n n)
⊦ ∀x.
Data.Byte.toNatural (Data.Byte.fromNatural x) =
Number.Natural.mod x Data.Byte.modulus
⊦ ∀x.
Data.Word16.toNatural (Data.Word16.fromNatural x) =
Number.Natural.mod x Data.Word16.modulus
⊦ ∀x. Data.Pair., (Data.Pair.fst x) (Data.Pair.snd x) = x
⊦ ∀x y. Data.Pair.fst (Data.Pair., x y) = x
⊦ ∀x y. Data.Pair.snd (Data.Pair., x y) = y
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. m = n ⇒ Number.Natural.≤ m n
⊦ ∀m n. Number.Natural.< m n ⇒ Number.Natural.≤ m n
⊦ ∀m n. Number.Natural.< m n ∨ Number.Natural.≤ n m
⊦ ∀m n. Number.Natural.≤ m n ∨ Number.Natural.≤ n m
⊦ ∀m n. Number.Natural.- m (Number.Natural.+ m n) = Number.Numeral.zero
⊦ ∀m n. Number.Natural.- (Number.Natural.+ m n) m = n
⊦ ∀m n. Number.Natural.- (Number.Natural.+ m n) n = m
⊦ ∀n.
Number.Natural.*
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) n =
Number.Natural.+ n n
⊦ ∀m n. ¬(Number.Natural.< m n ∧ Number.Natural.≤ n m)
⊦ ∀m n. ¬(Number.Natural.≤ m n ∧ Number.Natural.< n m)
⊦ ∀m n. ¬Number.Natural.< m n ⇔ Number.Natural.≤ n m
⊦ ∀m n. ¬Number.Natural.≤ m n ⇔ Number.Natural.< n m
⊦ ∀m n. Number.Natural.< m (Number.Natural.suc n) ⇔ Number.Natural.≤ m n
⊦ ∀m n. Number.Natural.≤ (Number.Natural.suc m) n ⇔ Number.Natural.< m n
⊦ ∀m. m = Number.Numeral.zero ∨ ∃n. m = Number.Natural.suc n
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀P. ¬(∀x. P x) ⇔ ∃x. ¬P x
⊦ ∀P. ¬(∃x. P x) ⇔ ∀x. ¬P x
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀w1 w2. Data.Byte.Bits.fromWord w1 = Data.Byte.Bits.fromWord w2 ⇔ w1 = w2
⊦ ∀w1 w2.
Data.Word16.Bits.fromWord w1 = Data.Word16.Bits.fromWord w2 ⇔ w1 = w2
⊦ ∀m n. Number.Natural.< m n ⇒ Number.Natural.div m n = Number.Numeral.zero
⊦ ∀m n. Number.Natural.suc m = Number.Natural.suc n ⇔ m = n
⊦ ∀m n. Number.Natural.+ m n = m ⇔ n = Number.Numeral.zero
⊦ ∀m n. Number.Natural.- m n = Number.Numeral.zero ⇔ Number.Natural.≤ m n
⊦ ∀n.
Number.Natural.odd n ⇔
Number.Natural.mod n
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) =
Number.Numeral.bit1 Number.Numeral.zero
⊦ ∀m n.
Number.Natural.even (Number.Natural.* m n) ⇔
Number.Natural.even m ∨ Number.Natural.even n
⊦ ∀m n.
Number.Natural.even (Number.Natural.+ m n) ⇔ Number.Natural.even m ⇔
Number.Natural.even n
⊦ ∀m n.
¬(n = Number.Numeral.zero) ⇒
Number.Natural.< (Number.Natural.mod m n) n
⊦ ∀P. (∀p. P p) ⇔ ∀p1 p2. P (Data.Pair., p1 p2)
⊦ ∀m n. Number.Natural.≤ m n ⇔ ∃d. n = Number.Natural.+ m d
⊦ ∀f g. f = g ⇔ ∀x. f x = g x
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ (Number.Natural.even Number.Numeral.zero ⇔ T) ∧
∀n. Number.Natural.even (Number.Natural.suc n) ⇔ ¬Number.Natural.even n
⊦ (Number.Natural.odd Number.Numeral.zero ⇔ F) ∧
∀n. Number.Natural.odd (Number.Natural.suc n) ⇔ ¬Number.Natural.odd n
⊦ ∀w1 w2.
Data.Word16.and w1 w2 =
Data.Word16.Bits.toWord
(Data.List.zipWith (∧) (Data.Word16.Bits.fromWord w1)
(Data.Word16.Bits.fromWord w2))
⊦ ∀w1 w2.
Data.Word16.or w1 w2 =
Data.Word16.Bits.toWord
(Data.List.zipWith (∨) (Data.Word16.Bits.fromWord w1)
(Data.Word16.Bits.fromWord w2))
⊦ ∀m n. Number.Natural.≤ m n ⇔ Number.Natural.< m n ∨ m = n
⊦ ∀m n.
Number.Natural.odd (Number.Natural.+ m n) ⇔
¬(Number.Natural.odd m ⇔ Number.Natural.odd n)
⊦ ∀m n. Number.Natural.≤ m n ∧ Number.Natural.≤ n m ⇔ m = n
⊦ ∀l n.
Data.Word16.shiftLeft (Data.Word16.Bits.toWord l) n =
Data.Word16.Bits.toWord (Data.List.@ (Data.List.replicate n F) l)
⊦ ∀m n.
Number.Natural.< m n ⇔
∃d. n = Number.Natural.+ m (Number.Natural.suc d)
⊦ ∀P Q. P ∧ (∃x. Q x) ⇔ ∃x. P ∧ Q x
⊦ ∀P Q. P ∨ (∃x. Q x) ⇔ ∃x. P ∨ Q x
⊦ ∀P Q. (∀x. P x ∨ Q) ⇔ (∀x. P x) ∨ Q
⊦ ∀P Q. (∃x. P x) ∧ Q ⇔ ∃x. P x ∧ Q
⊦ ∀P Q. (∀x. P x) ∨ Q ⇔ ∀x. P x ∨ Q
⊦ ∀P Q. (∃x. P x) ∨ Q ⇔ ∃x. P x ∨ Q
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ ∀t1 t2 t3. t1 ∧ t2 ∧ t3 ⇔ (t1 ∧ t2) ∧ t3
⊦ ∀t1 t2 t3. t1 ∨ t2 ∨ t3 ⇔ (t1 ∨ t2) ∨ t3
⊦ ∀p q r. p ∧ q ⇒ r ⇔ p ⇒ q ⇒ r
⊦ ∀m n p.
Number.Natural.* m (Number.Natural.* n p) =
Number.Natural.* (Number.Natural.* m n) p
⊦ ∀m n p.
Number.Natural.+ m (Number.Natural.+ n p) =
Number.Natural.+ (Number.Natural.+ m n) p
⊦ ∀m n p. Number.Natural.+ m n = Number.Natural.+ m p ⇔ n = p
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.+ m n) (Number.Natural.+ m p) ⇔
Number.Natural.≤ n p
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.+ m p) (Number.Natural.+ n p) ⇔
Number.Natural.≤ m n
⊦ ∀m n p.
Number.Natural.- (Number.Natural.+ m n) (Number.Natural.+ m p) =
Number.Natural.- n p
⊦ ∀m n p.
Number.Natural.< m n ∧ Number.Natural.≤ n p ⇒ Number.Natural.< m p
⊦ ∀m n p.
Number.Natural.≤ m n ∧ Number.Natural.≤ n p ⇒ Number.Natural.≤ m p
⊦ ∀n.
Data.Word16.Bits.toWord
(Data.List.:: (Number.Natural.odd n)
(Data.Word16.Bits.fromWord
(Data.Word16.fromNatural
(Number.Natural.div n
(Number.Numeral.bit0
(Number.Numeral.bit1 Number.Numeral.zero)))))) =
Data.Word16.fromNatural n
⊦ ∀P. (∀x. ∃y. P x y) ⇔ ∃y. ∀x. P x (y x)
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ ∀w n.
Data.Byte.bit w n ⇔
Number.Natural.odd
(Number.Natural.div (Data.Byte.toNatural w)
(Number.Natural.exp
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero))
n))
⊦ ∀w n.
Data.Word16.bit w n ⇔
Number.Natural.odd
(Number.Natural.div (Data.Word16.toNatural w)
(Number.Natural.exp
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero))
n))
⊦ ∀m n.
Number.Natural.* m n = Number.Numeral.zero ⇔
m = Number.Numeral.zero ∨ n = Number.Numeral.zero
⊦ ∀m n.
Number.Natural.+ m n = Number.Numeral.zero ⇔
m = Number.Numeral.zero ∧ n = Number.Numeral.zero
⊦ Data.List.length Data.List.[] = Number.Numeral.zero ∧
∀h t.
Data.List.length (Data.List.:: h t) =
Number.Natural.suc (Data.List.length t)
⊦ ∀P.
P Number.Numeral.zero ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀m n.
Number.Natural.exp m n = Number.Numeral.zero ⇔
m = Number.Numeral.zero ∧ ¬(n = Number.Numeral.zero)
⊦ ∀m n p.
Number.Natural.* m (Number.Natural.+ n p) =
Number.Natural.+ (Number.Natural.* m n) (Number.Natural.* m p)
⊦ ∀m n p.
Number.Natural.* m (Number.Natural.- n p) =
Number.Natural.- (Number.Natural.* m n) (Number.Natural.* m p)
⊦ ∀m n p.
Number.Natural.exp m (Number.Natural.+ n p) =
Number.Natural.* (Number.Natural.exp m n) (Number.Natural.exp m p)
⊦ ∀m n p.
Number.Natural.* (Number.Natural.+ m n) p =
Number.Natural.+ (Number.Natural.* m p) (Number.Natural.* n p)
⊦ ∀m n p.
Number.Natural.* (Number.Natural.- m n) p =
Number.Natural.- (Number.Natural.* m p) (Number.Natural.* n p)
⊦ ∀P Q. (∀x. P x ∧ Q x) ⇔ (∀x. P x) ∧ ∀x. Q x
⊦ ∀P Q. (∃x. P x ∨ Q x) ⇔ (∃x. P x) ∨ ∃x. Q x
⊦ ∀P Q. (∀x. P x) ∧ (∀x. Q x) ⇔ ∀x. P x ∧ Q x
⊦ ∀P Q. (∃x. P x) ∨ (∃x. Q x) ⇔ ∃x. P x ∨ Q x
⊦ ∀e f.
∃fn.
fn Number.Numeral.zero = e ∧
∀n. fn (Number.Natural.suc n) = f (fn n) n
⊦ ∀m n.
¬(n = Number.Numeral.zero) ⇒
Number.Natural.+ (Number.Natural.* (Number.Natural.div m n) n)
(Number.Natural.mod m n) = m
⊦ ∀w1 w2.
(∀i.
Number.Natural.< i Data.Byte.width ⇒
(Data.Byte.bit w1 i ⇔ Data.Byte.bit w2 i)) ⇒ w1 = w2
⊦ ∀w1 w2.
(∀i.
Number.Natural.< i Data.Word16.width ⇒
(Data.Word16.bit w1 i ⇔ Data.Word16.bit w2 i)) ⇒ w1 = w2
⊦ ∀m n p.
Number.Natural.* m n = Number.Natural.* m p ⇔
m = Number.Numeral.zero ∨ n = p
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.* m n) (Number.Natural.* m p) ⇔
m = Number.Numeral.zero ∨ Number.Natural.≤ n p
⊦ ∀b1 b2.
Data.Word16.fromBytes b1 b2 =
Data.Word16.or
(Data.Word16.shiftLeft
(Data.Word16.fromNatural (Data.Byte.toNatural b1))
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit1 Number.Numeral.zero)))))
(Data.Word16.fromNatural (Data.Byte.toNatural b2))
⊦ ∀l n.
Data.Byte.bit (Data.Byte.Bits.toWord l) n ⇔
Number.Natural.< n Data.Byte.width ∧
Number.Natural.< n (Data.List.length l) ∧ Data.List.nth n l
⊦ ∀l n.
Data.Word16.bit (Data.Word16.Bits.toWord l) n ⇔
Number.Natural.< n Data.Word16.width ∧
Number.Natural.< n (Data.List.length l) ∧ Data.List.nth n l
⊦ ∀m n p.
Number.Natural.< (Number.Natural.* m n) (Number.Natural.* m p) ⇔
¬(m = Number.Numeral.zero) ∧ Number.Natural.< n p
⊦ (∀x. Data.List.replicate Number.Numeral.zero x = Data.List.[]) ∧
∀n x.
Data.List.replicate (Number.Natural.suc n) x =
Data.List.:: x (Data.List.replicate n x)
⊦ ∀h1 h2 t1 t2. Data.List.:: h1 t1 = Data.List.:: h2 t2 ⇔ h1 = h2 ∧ t1 = t2
⊦ ∀x y a b. Data.Pair., x y = Data.Pair., a b ⇔ x = a ∧ y = b
⊦ ∀m n p q.
Number.Natural.< m p ∧ Number.Natural.< n q ⇒
Number.Natural.< (Number.Natural.+ m n) (Number.Natural.+ p q)
⊦ ∀m n p q.
Number.Natural.≤ m p ∧ Number.Natural.≤ n q ⇒
Number.Natural.≤ (Number.Natural.+ m n) (Number.Natural.+ p q)
⊦ ∀l.
Data.Byte.Bits.fromWord (Data.Byte.Bits.toWord l) =
if Number.Natural.≤ (Data.List.length l) Data.Byte.width then
Data.List.@ l
(Data.List.replicate
(Number.Natural.- Data.Byte.width (Data.List.length l)) F)
else Data.List.take Data.Byte.width l
⊦ ∀l.
Data.Word16.Bits.fromWord (Data.Word16.Bits.toWord l) =
if Number.Natural.≤ (Data.List.length l) Data.Word16.width then
Data.List.@ l
(Data.List.replicate
(Number.Natural.- Data.Word16.width (Data.List.length l)) F)
else Data.List.take Data.Word16.width l
⊦ (∀m.
Number.Natural.exp m Number.Numeral.zero =
Number.Numeral.bit1 Number.Numeral.zero) ∧
∀m n.
Number.Natural.exp m (Number.Natural.suc n) =
Number.Natural.* m (Number.Natural.exp m n)
⊦ (∀l. Data.List.drop Number.Numeral.zero l = l) ∧
∀n h t.
Data.List.drop (Number.Natural.suc n) (Data.List.:: h t) =
Data.List.drop n t
⊦ ∀m n p.
¬(Number.Natural.* n p = Number.Numeral.zero) ⇒
Number.Natural.mod (Number.Natural.mod m (Number.Natural.* n p)) n =
Number.Natural.mod m n
⊦ (∀l. Data.List.@ Data.List.[] l = l) ∧
∀h t l.
Data.List.@ (Data.List.:: h t) l = Data.List.:: h (Data.List.@ t l)
⊦ ∀t1 t2. (¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2) ∧ (¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2)
⊦ (∀l. Data.List.take Number.Numeral.zero l = Data.List.[]) ∧
∀n h t.
Data.List.take (Number.Natural.suc n) (Data.List.:: h t) =
Data.List.:: h (Data.List.take n t)
⊦ ∀m n p.
¬(Number.Natural.* n p = Number.Numeral.zero) ⇒
Number.Natural.mod (Number.Natural.div m n) p =
Number.Natural.div (Number.Natural.mod m (Number.Natural.* n p)) n
⊦ (∀m. Number.Natural.≤ m Number.Numeral.zero ⇔ m = Number.Numeral.zero) ∧
∀m n.
Number.Natural.≤ m (Number.Natural.suc n) ⇔
m = Number.Natural.suc n ∨ Number.Natural.≤ m n
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀w.
Data.Word16.toBytes w =
Data.Pair.,
(Data.Byte.fromNatural
(Data.Word16.toNatural
(Data.Word16.shiftRight w
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit0
(Number.Numeral.bit1 Number.Numeral.zero)))))))
(Data.Byte.fromNatural
(Data.Word16.toNatural
(Data.Word16.and w
(Data.Word16.fromNatural
(Number.Numeral.bit1
(Number.Numeral.bit1
(Number.Numeral.bit1
(Number.Numeral.bit1
(Number.Numeral.bit1
(Number.Numeral.bit1
(Number.Numeral.bit1
(Number.Numeral.bit1
Number.Numeral.zero))))))))))))
⊦ ∀m n q r.
m = Number.Natural.+ (Number.Natural.* q n) r ∧ Number.Natural.< r n ⇒
Number.Natural.div m n = q ∧ Number.Natural.mod m n = r
⊦ Data.Word16.Bits.toWord Data.List.[] =
Data.Word16.fromNatural Number.Numeral.zero ∧
∀h t.
Data.Word16.Bits.toWord (Data.List.:: h t) =
if h then
Data.Word16.+
(Data.Word16.shiftLeft (Data.Word16.Bits.toWord t)
(Number.Numeral.bit1 Number.Numeral.zero))
(Data.Word16.fromNatural (Number.Numeral.bit1 Number.Numeral.zero))
else
Data.Word16.shiftLeft (Data.Word16.Bits.toWord t)
(Number.Numeral.bit1 Number.Numeral.zero)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
⊦ ∀x m n.
Number.Natural.≤ (Number.Natural.exp x m) (Number.Natural.exp x n) ⇔
if x = Number.Numeral.zero then
m = Number.Numeral.zero ⇒ n = Number.Numeral.zero
else x = Number.Numeral.bit1 Number.Numeral.zero ∨ Number.Natural.≤ m n
⊦ (∀f. Data.List.zipWith f Data.List.[] Data.List.[] = Data.List.[]) ∧
∀f h1 h2 t1 t2.
Data.List.zipWith f (Data.List.:: h1 t1) (Data.List.:: h2 t2) =
Data.List.:: (f h1 h2) (Data.List.zipWith f t1 t2)
⊦ ∀b.
∃x0 x1 x2 x3 x4 x5 x6 x7.
b =
Data.Byte.Bits.toWord
(Data.List.:: x0
(Data.List.:: x1
(Data.List.:: x2
(Data.List.:: x3
(Data.List.:: x4
(Data.List.:: x5
(Data.List.:: x6
(Data.List.:: x7 Data.List.[]))))))))
⊦ ∀m n p.
Number.Natural.* m n = Number.Natural.* n m ∧
Number.Natural.* (Number.Natural.* m n) p =
Number.Natural.* m (Number.Natural.* n p) ∧
Number.Natural.* m (Number.Natural.* n p) =
Number.Natural.* n (Number.Natural.* m p)
⊦ ∀m n p.
Number.Natural.+ m n = Number.Natural.+ n m ∧
Number.Natural.+ (Number.Natural.+ m n) p =
Number.Natural.+ m (Number.Natural.+ n p) ∧
Number.Natural.+ m (Number.Natural.+ n p) =
Number.Natural.+ n (Number.Natural.+ m p)
⊦ ∀l n.
Data.Word16.shiftRight (Data.Word16.Bits.toWord l) n =
if Number.Natural.≤ (Data.List.length l) Data.Word16.width then
if Number.Natural.≤ (Data.List.length l) n then
Data.Word16.Bits.toWord Data.List.[]
else Data.Word16.Bits.toWord (Data.List.drop n l)
else if Number.Natural.≤ Data.Word16.width n then
Data.Word16.Bits.toWord Data.List.[]
else
Data.Word16.Bits.toWord
(Data.List.drop n (Data.List.take Data.Word16.width l))
⊦ (∀n. Number.Natural.+ Number.Numeral.zero n = n) ∧
(∀m. Number.Natural.+ m Number.Numeral.zero = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)
⊦ ∀p q r.
(p ∨ q ⇔ q ∨ p) ∧ ((p ∨ q) ∨ r ⇔ p ∨ q ∨ r) ∧ (p ∨ q ∨ r ⇔ q ∨ p ∨ r) ∧
(p ∨ p ⇔ p) ∧ (p ∨ p ∨ q ⇔ p ∨ q)
⊦ (∀n. Number.Natural.* Number.Numeral.zero n = Number.Numeral.zero) ∧
(∀m. Number.Natural.* m Number.Numeral.zero = Number.Numeral.zero) ∧
(∀n. Number.Natural.* (Number.Numeral.bit1 Number.Numeral.zero) n = n) ∧
(∀m. Number.Natural.* m (Number.Numeral.bit1 Number.Numeral.zero) = m) ∧
(∀m n.
Number.Natural.* (Number.Natural.suc m) n =
Number.Natural.+ (Number.Natural.* m n) n) ∧
∀m n.
Number.Natural.* m (Number.Natural.suc n) =
Number.Natural.+ m (Number.Natural.* m n)
⊦ ∀w.
∃x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15.
w =
Data.Word16.Bits.toWord
(Data.List.:: x0
(Data.List.:: x1
(Data.List.:: x2
(Data.List.:: x3
(Data.List.:: x4
(Data.List.:: x5
(Data.List.:: x6
(Data.List.:: x7
(Data.List.:: x8
(Data.List.:: x9
(Data.List.:: x10
(Data.List.:: x11
(Data.List.:: x12
(Data.List.:: x13
(Data.List.:: x14
(Data.List.:: x15
Data.List.[]))))))))))))))))